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1. INTRODUCTION

The Euler-Frobenius polynomials (Pm)m> 1 have been introduced by Euler
in 1755 and thoroughly investigated by Frobenius [2]. Later on it was
Schoenberg [6-8] who pointed out the important role that these remarkable
polynomials play in the theory of cardinal spline functions. In particular,
Schoenberg [7,8] has proved that for any complex weight h,* 1 that is
different from all the zeros of Pm there exists one and only one cardinal
exponential spline interpolant sm on IR of degree m ~ 1 with respect to the bi­
infinite geometric sequence (hn)nez'

A previous paper [4] has been concerned with a contour integral represen­
tation of cardinal exponential splines (cf. Theorem 1). Working in the same
vein as in [4], it is the purpose of the present paper to establish a contour
integral representation of the Euler-Frobenius polynomials (Pm)m> I

(Theorem 3) and to deduce from it their main properties by the methods of
complex analysis. Thus, the present paper may be considered as a
supplement to [4] which aims to illustrate the effectiveness of the contour
integral representation approach to some problems arising in the theory of
cardinal spline functions.

2. CARDINAL EXPONENTIAL SPLINE FUNCTIONS

Let m ~ 1 be a fixed integer and let 6 m (lR; Z) denote the complex vector
space of all cardinal spline functions of degree m on IR with respect to the
grid Z as their knot sequence. It is well known (Curry and Schoenberg [1],
Schoenberg [7,8]) that there exists a unique spline function bmE 6 m(lR; Z)
such that Supp (bm) = [0, m + 1n, fR bm(t) dt = 1 and its translates
{bm(' -n) ! n E Z} form a basis of the vector space 6 m(lR; Z) over C
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Let the complex number h *- 0 be fixed. A distinguished one-dimensional
vector subspace of 6 m(lR; Z) is spanned by the spline L.nel hnbm(·-n). The
elements of this vector subspace are called cardinal exponential splines of
degree m and weight h (Schoenberg [7,8]). In order that the element

s = C "hnb (·-n)m m £...., m
nel

(1)

should be a cardinal exponential spline interpolant of degree m with respect
to the bi-infinite geometric sequence (hn)nel a necessary and sufficient
condition is that the constant Cm E C x may be determined so that

(2)

holds.
In the case when the weight h *- 0 does not belong to the unit circle

U = jz E C 1Iz I= I}, a contour integral representation of the cardinal
exponential splines Sm E 6 m(lR; Z) of degree m ~ 1 is possible. In the case
when Ihi> 1 choose two real numbers c, c' so that 0 <c < log 1h I < c' holds.
In the other case when 0 <Ih I < 1 suppose that the real numbers c, c' satisfy
the conditions c < log Ih I <c' < O. In any case, introduce the two vertical
lines

L= {zEC 1Rez=c}, L' = jz E C 1Re z = c'}

in the complex plane C Then L U L' forms the boundary of a closed vertical
strip in the open complex right, resp. left, half-plane with the compact basis
~c, c'~ on the real axis IR. Let the lines L, L' be equipped with an orientation
so that their juxtaposition

P=L V L' (3)

forms a cycle in the extended complex plane that admits the topological
index

Indp(log Ih I) = 1

with respect to the point log IhiE k, c' B on IR. Then we may state

(4)

THEOREM 1. Any cardinal exponential spline sm E 6 m(lR; Z) of degree
m ~ 1 and weight h E C x - U admits the contour integral representation
with transcendental meromorphic integrand

(5)
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where CmE C denotes an arbitrary constant. The contour integral occurring
in (5) is independent of the particular choices of c and c/.

We shall not stop to repeat the proof. It is based on certain line integral
representations of the basis spline bm that are obtained by means of the
inverse Laplace transform. Details may be found in [4) or [5).

Observe that the meromorphic function

e(X+ l)z

Z "'" --,--::----,--,---,--...,....,(eZ_ h)zm+l (x E IR) (6)

has a pole of order m + 1 at the origin of C and simple poles at the zeros of
the function z "'" eZ- h with period 2ni. In the case x E ~ - 1,0] the sum of
all the residues of (6) in C vanishes (Schoenberg [7)). Thus, according to the
residue theorem and the Cauchy integral formulae the contour integral

1 e(X+l)Z- -f dz2ni p (eZ- h)zm+l
(m ~ 1)

along the path (3) with the orientation defined by (4) represents the mth
coefficient in the power series expansion of the meromorphic function

e(X+ l)z

z"'" Z he -
(x E ~-I, 0])

in a neighborhood of the origin. According to (5) the uniqueness of the local
power series expansions implies the following result:

THEOREM 2. Let h E ex - U and x E ~-I, 0] be given. For all z E C so
that Iz I<Ilog Ih II the cardinal exponential splines sm*" 0 (m ~ I) admit the
power series expansions

e(X + l)z

h _ez

where Co = 1 and So = Ijh.

(7)

The power series expansions (7) in the special case x = 0 will be of
particular importance in connection with the Euler-Frobenius polynomials
defined in the next section; see formula (13) infra.
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3. EULER-FROBENIUS POLYNOMIALS

For any integer m ~ 1 the mth Euler-Frobenius polynomial Pm E Z [h]
is defined according to

Pm(h) = m! L bm(n + 1) hn
•

O<;;n<;;m-I

(8)

Observe that Pm is a monic polynomial of degree m - 1 with strictly positive
integer coefficients that satisfies Pm(O) = 1 (m ~ 1). Moreover, we have

(9)(m ~ 1),

THEOREM 3. For any h E iC x - U the Euler-Frobenius polynomial Pm of
degree m - 1 (m ~ 1) admits the contour integral representation

(h - 1)m+1 m! eZ

Pm(h) = h 2nit (eZ-h)zm+1 dz

where P is the boundary (3) of a closed vertical strip in the open complex
right, resp. left, half-plane according to the cases Ihi> 1, resp. 0 <Ih I< 1,
equipped with the orientation so that (4) holds.

Proof If (1) and (5) are evaluated at the point x = 0 we obtain the
equality

(
1 )m+ I 1 eZ

I bm(n)h-
n = I--h -2·f(z_h)m+l dz

I <;;n<;;m m p e z
(10)

for m ~ 1. Since the basis spline bm satisfies the homogeneous linear
difference equation

(x E IR) (11 )

we conclude from (8) and (10) that (9) holds. I

The symmetry between the two cases Ihi> 1 and 0 <Ih I< 1 may be
expressed by the following reflection principle:

COROLLARY 1. For all hE iC x the Frobenius reciprocal identity

(m ~ 1) ( 12)

holds.

Of course, the identity (12) is nothing more than the homogeneous linear
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difference equation (11) in terms of the Euler-Frobenius polynomials
(Pm)m;;> l'

A local power series argument similar to that in the proof of Theorem 2
leads to

COROLLARY 2. For any h E ex - U, the Euler-Frobenius polynomials

(Pm)m> 1 are generated by the power series expansion

(h - l)eZ Pm(h) zm

h(h _eZ) = ~O (h _1)m m!

where Po(h) = l/h.

(I z I<Ilog Ih 11), (13)

In the case when z E C satisfies Iz I < Ilog Ih II, the power series expansion
of the left-hand side of (13) about the origin yields the identities

(h - 1) I (v + l)mh- 2 - v = Pm(h) m
v;;' 0 (h-I)

An application of (12) proves

(m ~ 0).

COROLLARY 3. For any h =t= 1, the Euler-Frobenius polynomials (Pm)m;;'1
admit the formal power series expansions

Pm(h) = '" (n + l)mh n
( I-h)m+1 L.

n;;>O

(m ~ 1). (14)

4. THE MAIN PROPERTIES OF THE EULER-FROBENIUS POLYNOMIALS

If we compare, for instance, the contour integral representations (5) and
(9) of the cardinal exponential splines and the Euler-Frobenius polynomials,
respectively, the condition (2) entails

THEOREM 4. For any h E ex - U there exists a cardinal exponential
spline interpolant of degree m ~ 1 with respect to the bi-irifinite geometric
sequence (hn)nEz if and only if the condition

is satisfied.

Pm(h) =t= 0 (15)
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The identity (14) furnishes

-h(h - l)p~(h) = (1 - h)m+2 L n(n + l)m hn - (m + 1)(1 - h)m+ 1

n;;.O

x L (n + l)m hn +1

n;;.O

for m ~ 1. This proves
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THEOREM 5. The Euler-Frobenius polynomials (Pm)m;;'l satisfy the three­
terms recurrence relation

Pm+l(h) = (mh + I)Pm(h) - h(h - l)p~(h)

Finally, Theorem 5 implies as an easy consequence

(m ~ 1). (16)

THEOREM 6. For every integer m ~ 2 all the roots of the
Euler-Frobenius polynomial Pm are simple and located on the open negative
real half-line IR ~. If ho E IR ~ is a root ofPm then its reciprocal l/ho E IR ~ is
also a root ofPm and Pm( - 1) = 0 holds if and only if m is even.

Proof Since we have P2(h) = h + 1, the statement in the case m = 2 is
trivial. Suppose that the assertion is verified for an arbitrary integer m ~ 2.
The recurrence relation (16) then shows that Pm + 1 admits alternating signs at
the m - 1 different roots of Pm on IR ~. By the intermediate value theorem,
the polynomial Pm +1 of degree m has exactly m different roots on IR ~ that
separate the m - 1 roots of Pm' An application of the Frobenius reciprocal
identity (12) completes the proof. I

In view of the condition (15), the weights h E (; x - U that belong to the
complex plane cut along the closed negative real half-line IR _ are admissible
choices to construct cardinal exponential spline interpolants with respect to
the bilateral geometric sequence (hn)nel'

For a survey of the contour integral representation approach to the theory
of cardinal spline functions, the reader is referred to [5]. In this connection
also see (3) where a complex contour integral representation of the cardinal
logarithmic splines is established.
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